
1

15 Advanced RAG Techniques
from Pre-Retrieval to Generation

ZAKEY FAIEQ

March 2024

2

Table of Contents

The Author Zakey
Faieq

Connect with WillowTree’s Data and AI Research
Team (DART):

Michelle Avery | Group VP, AI
WillowTree, a TELUS International Company
michelle.avery@willowtreeapps.com

Table of Contents

Abstract

1. Pre-Retrieval and Data-Indexing Techniques

2. Retrieval Techniques

3. Post-Retrieval Techniques

4. Generation Techniques

5. Other Considerations for Advanced RAG Techniques

Conclusion

Page 3

Page 4

Page 15

Page 20

Page 22

Page 24

Page 25

WillowTree, a TELUS International Company
15 Advanced RAG Techniques
from Pre-Retrieval to Generation

Let’s connect

https://www.linkedin.com/in/michelle-avery-63729bb7/

3

ai@willowtreeapps.com
1-888-329-9875
Boston | Charlottesville | Columbus | Durham
Lisbon | Porto Alegre | São Paulo | Vancouver

Abstract

Our introductory article on retrieval augmented generation (RAG) introduced key con-
cepts and looked at how RAG systems work. In this whitepaper, we explore 15 advanced
RAG techniques for improving a generative AI system’s output quality and overall perfor-
mance robustness.

These advanced RAG techniques greatly expand your team’s options to fine-tune system
performance. For example, we experimented with most of the advanced RAG techniques
explored in this whitepaper when building a safe conversational AI assistant for a major
financial services firm. Doing so allowed us to test and identify the proper optimizations,
from pre-retrieval through generation, using our automated RAG evaluation pipeline
(see image below).

Note that most of the following techniques are discussed within the context of a
conversational AI assistant powered by RAG.

ÜÆÑ°�»qÑ°� r[Pq:��f�Ñ°ò:çf[±f[®©���¬¬� ¾qPÑ°½çÆf°�¬¬�

Âç[òÇ�ÜÆÑ°�©ÑÆPf[ÆÑ

ÛÓÖ×ØÔÒÚÕ

ÐÙÏÙÎÙÍÔ

ïë ìÔÏäêÔæÙØ�îÔâáÓêßÞÔÍ

�ë
äÔ�ìÔÏäêÔæÙØ�îÔâáÓêßÞÔÍ

©����Ñ�ç�Ñ°��rÆ�ò�©���

[Ñ�ÑÆÆò°���

(»qÑ°��©fq:ç[2.

(»qÑ°��9,Pò[Æçf0

(¾Ñò°�%�»qÑ°��"P:ç?ç!Ñ°�

�Ñ 2 �;��9�

Xë
ÖÍÏ�ìÔÏäêÔæÙØ�îÔâáÓêßÞÔÍ

(m°Ñ°ò[dç[b

(m°f?P:�\f?P°ÑÆÆçf0

(\f°°Ñ�:ç½Ñ�©��

r[�f°?ò:çf[��Ñ�qPÇç�ò:çf[

"°ç2ç[òÇ��f�q?Ñ[:Æ

r[�f°?ò:çf[��Ñ[Æç:��©Ñ�[Ñ?Ñ[:

\%q[dç[2�¾:°ò:Ñ2§

"P:ç?ç!ò:çf[

;çÑ°ò°�%ç�òÇ��ò:�

r[�Ñ,�\°Ñò:çf[

�ë �ÔÓÔäÙÏêÖÓ�îÔâáÓêßÞÔÍ

(\%òç[�f��±f:Ñ.

(¾ÑÇ�®©�0

(Âç[Ñ��q[ç[2

©���¬¬�

:ÑÆ

±f

https://www.willowtreeapps.com/craft/retrieval-augmented-generation
https://www.willowtreeapps.com/case-studies/conversational-ai-financial-services
https://www.willowtreeapps.com/case-studies/conversational-ai-financial-services
https://www.willowtreeapps.com/craft/evaluating-rag-using-llms-to-automate-benchmarking-of-retrieval-augmented-generation-systems
https://www.willowtreeapps.com/services/voice

4

1. Pre-Retrieval and Data-Indexing Techniques

Pre-retrieval optimizations primarily consist of improving the quality and retrievability of
the information in your data index or knowledge database. The techniques and level of
effort needed here largely depend on the nature, sources, and size of your data.

For example, optimizing information density improves user experience and lowers costs
by producing more accurate responses with fewer tokens. But how would we optimize
changes from system to system? The optimizations that will enhance retrieval for a travel
industry chatbot could backfire spectacularly in a financial AI assistant because each
depends on information of a different nature and distinct regulatory frameworks.

LLMs offer us many ways to optimize information during pre-retrieval, allowing us to test
and fine-tune different approaches depending on our goals. Here are five LLM-based
advanced RAG techniques worth exploring at the pre-retrieval stage, including several
variations and improvements on the primary Technique 1.

Technique 1: Increase information density using LLMs

You can significantly improve the performance of your RAG system by using LLMs to
process, clean, and label data before storage. This improvement is due to the fact that
unstructured data from heterogeneous data sources (e.g., PDFs, scraped web data,
audio transcripts) is not necessarily built for RAG systems, creating issues such as:
• low information density
• irrelevant information and/or noise
• information duplication

Low information density forces RAG systems to insert more chunks into the LLM context
window to correctly answer a user query, increasing token usage and cost. Furthermore,
low information density dilutes relevant information to the point an LLM could respond
incorrectly. GPT-4 appears relatively resistant to this problem when using less than
70,000 tokens, but other models may not be as robust.

Here’s a recent scenario we encountered that could easily occur when working on a RAG
system: We scraped hundreds of web pages as our primary data source, but the original
HTML contained a significant amount of irrelevant information (e.g., CSS classes, header/

WillowTree, a TELUS International Company
15 Advanced RAG Techniques
from Pre-Retrieval to Generation

1. Pre-Retrieval and Data-Indexing
Techniques

https://twitter.com/GregKamradt/status/1722386725635580292?lang=en

5

footer navigations, HTML tags, redundant information between pages). Even after
stripping the CSS and HTML programmatically, the information density was still low.

So, to improve the information density in our chunks, we experimented with using GPT-
4 as a fact extractor that gleans relevant information from a document. After stripping
CSS and HTML tags, we used an LLM call resembling the one below to process every
scraped web page before chunking and inserting them into our knowledge base:

fact_extracted_output = openai.ChatCompletion.create(
model=”gpt-4”,
 messages=[
 {
 “role”: “system”,
“content”: “You are a data processing assistant. Your task is to
extract meaningful information from a scraped web page from XYZ
Corp. This information will serve as a knowledge base for further
customer inquiries. Be sure to include all possible relevant
information that could be queried by XYZ Corp’s customers. The output
should be text-only (no lists) separated by paragraphs.”,
 },
 {“role”: “user”, “content”: <scraped web page>},
],
 temperature=0)

Here’s an anonymized example of scraped web content that went through our pipeline.
Starting with the left column, we see that useful information density is low for the raw
HTML snippet.

6

Raw HTML

<htri iaig="ei-US" ari:iaig="ei-

US"><hea ciass="at-eiereit-

rarker">

 <script asnic="" src="https://

c i.braich.io/braich-

iatest.rii.js"></script><script

i ="iabich" ata-

iabicher="sbccess">

 ocbreit.a Eveit«isteier²"at-

iibrarn-ioa e ", ² bictioi²e� r

 ocbreit.getEiereitBnI ²'iabi

ch'�.setAttribbte²' ata-

iabicher','sbccess'�

 }

 ��;

 </script>

<reta charset="UTF-8">

<titie>High Iiterest IRA Saviigs

Accobit | Eaarpie Baik Seiect

Saviigs IRA</titie>

<reta iare=" escriptioi"

coiteit="«eari abobt Eaarpie

Baik's Pre erre Saviigs IRA, a high

iiterest IRA saviigs accobit with

higher rates whei nob bbi ie nobr

Eaarpie accobits. Visit a Eaarpie

Baik to opei ai accobit iow.">

<reta iare="terpiate"

coiteit="eaarpie-geieric-page-

terpiate">

<reta iare="viewport"

coiteit="wi th= evice-wi th, iiitiai-

scaie=1">

 <iiik hre ="https://

www.eaarpie.cor/bs/ei/persoiai-

baikiig/ira/saviigs" rei="caioiicai">

 <iiik rei="stniesheet" hre ="/

etc.ciieitiibs/eaarpiesite/ciieitiibs/

ciieitiib-base.ic-1681110478373-

ic.rii.css" tnpe="teat/css">

 <script tnpe="teat/javascript">

 var proviice_iist =

"{\a22proviices\a22:[]}";

 var proviiceCitnPage = " aise";

 var ratesAPIIi o =

HTML Stripped of CSS/JS/HTML Tags

High Iiterest Retirereit Accobit

Saviigs | Eaarpie Baik Seiective

Saviigs Retirereit Accobit

Eaarpie Saviigs Retirereit Accobit

1

Iicrease nobr eariiigs bn raiitaiiiig

a higher baiaice ai coiiectiig a

qbaii niig Eaarpie accobit

2

$10,000

Iiitiai eposit reqbirereit to open

Rate eihaicereit

Sbperior rates whei nob coiiect a

qbaii niig Eaarpie accobit

2

No roithin charges

No roithin raiiteiaice charges

Secbre

Iiitiate ii a phnsicai iocation

Corpare

Beiefts nob receive

Boost nobr eariiigs bn raiitaiiiig a

higher baiaice ai coiiectiig a

qbaii niig accobitè

2

Retirereit saviigs

Ai Eaarpie Saviigs Retirereit

Accobit cobi be ai optirai choice

 or those seekiig a sbperior iiterest

rate with the feaibiiitn to a bi s

aintire

$10,000 iiitiai eposit

Perrits a itioiai coitribbtiois

iocation

Yob are eaariiiig ii o or _______

Mo i n nobr iocation

iocatioi icon

NA,N;

Region

Choose a region

Coiiecticbt

Deiaware

GPT-4 Fact-Extracted Content

Eaarpie Baik o ers a high-niei

retirereit saviigs accobit titie the

Eaarpie Saviigs Retirereit Accobit.

This accobit eiabies nob to eihaice

nobr eariiigs bn keepiig a iarger

baiaice ai coiiectiig a qbaii niig

Eaarpie accobit. To iiitiate this

accobit, a riiirbr o $10,000 is

reqbire . A itioiaiin, this accobit is

eaerpt ror roithin raiiteiaice

 eess

The Eaarpie Saviigs Retirereit

Accobit is ai eaceiieit optioi or

those seekiig a corpetitive iiterest

rate aioigsi e the abiiitn to coitribbte

 bi s at ain roreit. Yobr iiterest

rate escaiates as nobr baiaice

iicreases, ai iig ii raairiuiig nobr

saviigs. Ai eatra rate iicrease is

avaiiabie whei nob iiik a qbaii niig

Eaarpie Baik rortgage, hore

eqbitn ioai, cre it car , or ai

operatioiai persoiai or sraii

bbsiiess checkiig accobits

This accobit prorotes the

acceieratioi o nobr retirereit

saviigs with its tiere iiterest rates. It

aiso provi es taa a vaitages. For

Tra itioiai IRAs, eariiigs accbrbiate

taa- e erre , ai bpoi with rawai,

eariiigs are taae as iicore.

Coitribbtiois right be taa-

 e bctibie. For Roth IRAs, eariiigs

accbrbiate taa- ree, ai eariiigs

with rawi are iot sbbject to iicore

taa i then reet the criteria or a

qbaiife istribbtiois

The Eaarpie Saviigs Retirereit

Accobit oes iot charge a roithin

raiiteiaice ee, earis iiterest at

tiere rates, ai perrits a itioiai

coitribbtiois. It o ers a rate iicrease

bpoi iiikiig a qbaii niig accobit ai

sbpports retirereit saviigs with a

corpetitive iiterest rate ai the

feaibiiitn or aintire coitribbtioiss

For specifc taa a vice or to eterriie

the rost sbitabie tnpe o IRA or nobr

sitbatioi, it's recorrei e to coisbit

with a taa a visor or re er to IRS

Pbbiicatioi B90. This pbbiicatioi is

avaiiabie bn coitactiig the IRS at

1-800-829-3676 or via their website at

www.irs.govè

GPT-4 Fact

Eatractioi

Things are a little better in the central snippet with programmatically stripped CSS, JS,
and HTML, but it still doesn’t contain high-quality information. Now, look at the right-
hand snippet with fact-extracted content processed by GPT-4 and notice the leap in
information density.

7

That’s what we used in our chunking and embedding process. Notably, the token counts
for the text from a single webpage at the various stages were:
• Raw HTML: ~55,000 tokens
• Stripped HTML: 1,500 tokens
• GPT-4 processed HTML: 330 tokens

While the most significant reduction in token count (20x) occurred with the
programmatic stripping of CSS, JS, and HTML, the GPT-4 fact-extraction step applied to
the stripped HTML consistently reduced token counts further by a factor of 500%.

We tried a pipeline where we kept HTML tags in case there was some semantic meaning
inherent to the structure of the HTML, but in our particular case, our RAG evaluation
metrics showed improved performance with the tags left out.

Caveat: Risk of Information Loss

The risk of using LLMs to increase information density is that critical information could be
lost. One strategy to mitigate this is ensuring that the maximum size of the fact-extraction
LLM output is a) not capped or b) lower than the size of the input content, in case the
input content was already information-dense and 100% useful.

Technique 2: Apply hierarchical index retrieval

Search can be made more efficient via multi-layer retrieval systems utilizing LLM-
generated summaries. The practice of hierarchical index retrieval uses document
summaries to streamline the identification of relevant information for response generation.

The previous section focused on improving information density without losing relevant
information, similar to lossless compression. However, in generating summaries of
documents, LLMs do something more analogous to lossy compression.

These summarized documents support the efficient search of large databases. Instead of
only creating a single data index consisting of document chunks, an additional data index
composed of document summaries creates a first-layer filtering mechanism that excludes
document chunks from documents with summaries irrelevant to the search query.

https://en.wikipedia.org/wiki/Semantic_HTML

8

Technique 3: Improve retrieval symmetry with a hypothetical
question index

LLMs can also transform documents into a format optimal for both the embedding
model and queries used in the RAG system. One method is to use GPT-4 to generate a
list of hypothetical/possible question-and-answer pairs for each document, then use the
generated questions as the chunks to be embedded for retrieval.

At retrieval time, the system will retrieve both the question and its corresponding answer
and provide them to the LLM. Thus, the embeddings for the queries likely have a much
greater cosine similarity to the embeddings of the generated questions. This similarity
reduces the risk of losing relevant context in the chunking process. Each Q&A pair is thus
self-contained and will theoretically contain all the required context.

Asymmetry between the query and the documents used for retrieval is a common issue
in RAG systems. Queries are typically short questions like, “What is the best travel credit
card offered by XYZ financial institution?” However, the relevant document chunks for
that query are much longer (e.g., extensive paragraphs containing breakdowns of all the
credit cards offered by XYZ financial institution).

This financial services example poses a problem for semantic search: if the query is
markedly different from the document chunks (i.e., too much asymmetry), semantic
similarity may be low, which could yield poor search results and bias the system toward
the wrong information.

Image credit: towardsai.net

https://pub.towardsai.net/advanced-rag-techniques-an-illustrated-overview-04d193d8fec6

9

Raw HTML

<html lang="en-US" xml:lang="en-

US"><head class="at-element-

marker">

 <script async="" src="https://

cdn.branch.io/branch-

latest.min.js"></script><script

id="launch" data-

launcher="success">

 document.addEventristener�"at-

library-loaded", �function�e/ �

 document.getElementById�'laun

ch'/.setAttribute�'data-

launcher','success'$

 ×

 //Ì

 </script>

<meta charset="UT¶-«">

<title>High Interest IRA Savings

Account | Example Bank Select

Savings IRA</title>

<meta name="description"

content="rearn about Example

Bank's Preferred Savings IRA, a high

interest IRA savings account with

higher rates when you bundle your

Example accounts. Visit a Example

Bank to open an account now.">

<meta name="template"

content="example-generic-page-

template">

<meta name="viewport"

content="width=device-width, initial-

scale=1">

 <link href="https://

www.example.com/us

HTML Stripped of CSS/JS/HTML Tags

High Interest Retirement Account

Savings | Example Bank Selective

Savings Retirement Account

Example Savings Retirement Account

1

Increase your earnings by maintaining

a higher balance and connecting a

qualifying Example account

2

$10,000

Initial deposit requirement to open

Rate enhancement

Superior rates when you connect a

qualifying Example account

2

No monthly charges

No monthly maintenance charges

Secure

Initiate in a physical location

Compare

BeneÈts you receive

Boost your earnings by maintaining a

higher balance and connecting a

qualifying account.

2

Retirement savings

An Example Savings Retirement

Account could be an optimal choice

for those seeking a superior interest

rate with the fexibility to add funds

anytime

$10,000 initial deposit

Permits additional contributions

location

You are examining info for _______

Modify your location

location icon

NA,N.

Region

Choose a region

Connecticut

Delaware

GPT-4 Generated Q&A Pairs

Q: What is the Example Savings

Retirement AccountC

A: The Example Savings Retirement

Account is a high-yield IRA savings

account provided by Example Bank. It

enables you to increase your earnings

by maintaining a larger balance and

connecting a qualifying Example

account.

=======================

Q: What is the minimum deposit

required to open an Example Savings

Retirement AccountC

A: To open an Example Savings

Retirement Account, an initial deposit

of $10,000 is required.

=======================

Q: Is there a monthly fee for the

Example Savings Retirement

AccountC

A: No, there is no monthly

maintenance fee for the Example

Savings Retirement Account.

=======================

Q: How can I initiate an Example

Savings Retirement AccountC

A: An Example Savings Retirement

Account can be initiated by visiting an

Example Bank location.

=======================

Q: What advantages does the

Example Savings Retirement Account

offerA

A: The Example Savings Retirement

Account provides

GPT-4

Q�A

Generation

And here’s the prompt we used:

generated_question_answer_pairs = openai.ChatCompletion.create(
 model=”gpt-4”,
 messages=[
 {
 “role”: “system”,
“content”: “Analyze the provided text or html from Example bank’s

Here’s a diagram illustrating how we used a hypothetical question index:

10

website and create questions an Example bank customer could ask a
chatbot about the information in the text. You should not create
a question if it does not have a useful/informative answer to it
that would be helpful for a customer. For every question, please
formulate answers based strictly on the information in the text.
Use Q: for questions and A: for answers. Do not write any other
commentary. Questions should not reference html sections or links.
Create as many useful Q&A pairings as possible.”,
 },
 {“role”: “user”, “content”: <scraped web page>},
],
 temperature=0)

Using LLMs to generate Q&A pairs can also be helpful for RAG benchmarking and
evaluation. The Q&A pairs can serve as the gold standard dataset for questions and
expected responses that the RAG system as a whole should be able to answer.

As for decreasing chunk size, that approach would only go so far, as chunks must be a
minimum size to maintain enough context information to be useful. Even with larger
chunk sizes, there’s always a risk of losing critical context information in the chunking
process. This risk can be mitigated (but not eliminated) by experimenting based on
chunking considerations such as size and overlap ratio.

Caveat: Risks and alternatives to a hypothetical question index

Information loss is still a risk with this advanced RAG technique. For highly information-
dense documents, LLMs may not be able to generate enough Q&A pairs to cover the
range of queries users may have relative to the information in a document.

Additionally, depending on your document store’s size, using an LLM to process and
transform every document to alleviate query-document asymmetry may be cost-prohibitive.

Finally, depending on the traffic of your RAG system, a more effective solution may be
a reverse approach called hypothetical document embeddings (HyDE) to transform
user queries instead of documents. We discuss HyDE further in the Retrieval Techniques
section below.

https://www.willowtreeapps.com/craft/evaluating-rag-using-llms-to-automate-benchmarking-of-retrieval-augmented-generation-systems
https://www.willowtreeapps.com/craft/evaluating-rag-using-llms-to-automate-benchmarking-of-retrieval-augmented-generation-systems
https://www.pinecone.io/learn/chunking-strategies/#Chunking-Considerations

11

Technique 4: Deduplicate information in your data index using LLMs

Using an LLM as an information deduplicator can improve the quality of your data index.
The LLM deduplicates information by distilling the chunks into fewer chunks, improving
the odds of a desirable response.

This is a valuable technique because, depending on the circumstances, information
duplication in your data index may help or hinder your RAG system’s output. On the
one hand, if the correct information needed to answer a query is duplicated within the
context window of the LLM generating a response, it increases the likelihood the LLM will
respond desirably.

Conversely, suppose the degree of duplication dilutes or even entirely crowds out the
desired information from the LLM’s context window. In that case, users may receive a
non-answer — or worse, an AI hallucination from the RAG system.

We can deduplicate information by k-means clustering the chunks in our embeddings
space so the aggregate token count in each cluster of chunks fits within an LLM’s
effective context window. From here, we can task the LLM to simply output a distilled set
of new chunks from the original cluster that removes duplicated information. If a given
cluster contains N chunks, we should expect this deduplication prompt to output <= N
new chunks where any redundant information is removed in the new chunks.

The image below shows chunks in an embedding space before and after information
deduplication.

Cluster

Initial Document Chunks in

Embedding Space (13 total)

Deduplicated Document Chunks in

Embedding Space (@ total?

Raw Chunk 1: <Fact A, Fact B, Fact C>

Raw Chunk h: <Fact A, Fact C>

Raw Chunk Z: <Fact B, Fact C_

GPT Generated Chunk 1: <Fact A>

GPT Generated Chunk h: <Fact B>

GPT Generated Chunk Z: <Fact C_

GPT&#�Chunk Cluster�

Information Deduplication

GPT&#�Chunk Cluster�

Information Deduplication

https://www.willowtreeapps.com/insights/ai-hallucinations-willowtrees-defense-in-depth-approach

12

NOTE: This process makes it more difficult to include any citation system in your RAG
system, as the new chunks may contain information from multiple documents. Also, the
risk of information loss is still present, as is the risk of de-emphasizing information that
may have benefited from being duplicated in the retrieval system.

Technique 5: Test and optimize your chunking strategy

The techniques above highlight the importance of chunking strategy. But the optimal
chunking strategy is specific to the use case, and a multitude of factors influence it. The
only way to find the optimal chunking strategy is to extensively A/B test your RAG system.
Here are some of the most important factors to consider when testing.

Embedding model

Different embedding models have different performance characteristics at different input
sizes. For instance, embedding models from sentence transformers excel with embedding
single sentences, whereas text-embedding-ada-002 can handle much larger inputs. Chunk
sizes should ideally be tailored to the specific embedding model used, or vice versa.

Nature of content to be embedded

Depending on the information density, format, and complexity of your documents,
chunks may need to be a certain minimum size to contain enough context to be useful
for the LLM. However, this is a balancing act. If the chunks are too large, they may dilute
relevant information in the embedding, reducing retrieval odds for that chunk during
semantic search.

If your documents don’t contain natural breakpoints (e.g., a textbook chapter sectioned
with subheaders) and documents are being chunked based on an arbitrary character
limit (e.g., 500 characters), there’s a risk of critical context information being split apart.
In this case, an overlap should be considered. For instance, a chunking strategy with a 50%
overlap ratio would mean that two adjacent 500-character chunks from a document will
overlap each other by 250 characters. Information duplication and the cost of embedding
more data should be taken into consideration when deciding on the overlap ratio.

13

Complexity or type of queries to be embedded

If your RAG system handles queries made in large paragraphs, then chunking your data
up into large paragraphs makes sense. However, large chunk sizes may not facilitate
optimal information retrieval if queries are only a few words long.

LLM capabilities, context window, and cost

While GPT-4 seems capable of handling many large chunks, smaller generative models
may not perform as well. Also, running inference on many large chunks can be costly.

Amount of data to be embedded

Embeddings must be stored somewhere, and smaller chunk sizes result in more
embeddings for the same amount of data, meaning increased storage requirements and
costs. More embeddings may also increase the computational resources required for a
semantic search, depending on how your semantic search is implemented (exact nearest
neighbor vs. approximate nearest neighbor).

Our experience

By conducting extensive A/B testing with the help of our LLM-powered RAG evaluation
system, we can evaluate the best chunking strategy for each of our use cases.

We tested the following chunking strategies, mainly on the improved information-dense
documents processed by GPT-4:
• 1,000-character chunks with 200-character overlap
• 500-character chunks with 100-character overlap
• Paragraphs (paragraph breaks existed in the processed docs)
• Sentences (split using spaCy)
• Hypothetical questions (embedding questions from the generated hypothetical

question index detailed above)

When building our financial services AI assistant, we found that the choice of chunking
strategy wasn’t very impactful (see results in the table below). The 1,000-character
chunks with a 200-character overlap strategy performed marginally better than the other
strategies.

https://twitter.com/GregKamradt/status/1722386725635580292?lang=en
http://LLM-powered RAG evaluation system
http://LLM-powered RAG evaluation system
https://www.willowtreeapps.com/case-studies/conversational-ai-financial-services

14

Our hypotheses for why the chunking strategy did significantly impact our use case
include:
• the domain we built our RAG application for wasn’t too complex
• the dataset was too small for the chunking strategy to impact it much
• the processing we did with GPT-4 to improve information density made the biggest

impact

However, with just one change to our application — such as building for a domain with
greater complexity — and we’d likely see different results.

Other pre-retrieval optimization techniques

There are more advanced RAG techniques for pre-retrieval and data indexing that
we’re eager to test. These include recursive retrieval, which supports complex, multi-
step queries by iterating the output from one retrieval step and using it as the input for
another step. Context enrichment via sentence window and parent-child chunk retrieval
also interests us as a way to improve search and enrich LLM responses.

Chunking Strategy (with 3,500 tokens’
worth of chunks inserted into GPT-4
prompt)

1,000-character chunks with 200-character
overlap

Hypothetical questions (embedding
questions from the generated hypothetical
question index detailed above)

Paragraphs (paragraph breaks existed in the
processed docs)

500-character chunks with 100-character
overlap

Sentences (split using spaCy)

Results (GPT-4 evaluation of
truthfulness compared to gold standard
response | Score between 1–5)

4.34

4.23

4.2

4.19

3.96

https://www.promptingguide.ai/research/rag
https://pub.towardsai.net/advanced-rag-techniques-an-illustrated-overview-04d193d8fec6

15

2. Retrieval Techniques

Retrieval optimizations cover advanced RAG techniques and strategies targeted at
inference time with the goal of improving search performance and retrieval results
before retrieval occurs.

Technique 6: Optimize search queries using LLMs

Search systems tend to work optimally when search queries are presented in a specific
format. LLMs are a powerful tool for tailoring or optimizing user search queries for a
specific search system. To illustrate this, let’s look at two examples: optimizing a simple
search query and a query for a conversational system.

Simple search query optimization

Let’s say a user wants to search for all news articles from example-news-site.com about
Bill Gates or Steve Jobs. They might type something like this into Google:

(Suboptimal Google Search Query):
Articles about Bill Gates or Steve Jobs from example-news-site

An LLM can be used to optimize this search query specifically for Google by utilizing a
few advanced search features Google provides.

(Optimal Google Search Query):
“Bill Gates” OR “Steve Jobs” -site:example-news-site.com

This approach works fine for simple queries, but for conversational systems, we need to
step things up.

WillowTree, a TELUS International Company
15 Advanced RAG Techniques
from Pre-Retrieval to Generation

2. Retrieval Techniques

16

Search query optimization for conversational AI systems

Though the simple search query optimization detailed above can be viewed as an
enhancement, we’ve found that using LLMs to optimize search queries for RAG in
conversational systems is critical.

For a simple Q&A bot capable of only having single-turn exchanges, the user’s question
doubles as the search query to retrieve information for augmenting an LLM’s knowledge.
But things get a little more tricky in conversational systems. Take the following example
conversation:

Customer: “ What are the interest rates for your CDs?”
Assistant: “Our interest rates are XYZ.”
Customer: “Which credit card is good for travel?”
Assistant: “The XYZ credit card is good for travel for ABC reasons”
Customer: “Tell me more about the interest rate for that”

To answer the user’s last question, a semantic search likely needs to occur to retrieve
information regarding the specific XYZ travel credit card. What, then, should the search
query be? Merely using the last user message is not specific enough since a financial
institution likely has many products that yield interest. In that case, the semantic search
would yield lots of potentially irrelevant information that could crowd out actual relevant
information in the LLM’s context window.

What about using the entire conversation transcript as a semantic search query? That
may yield better results, but they’ll still likely include information about CDs which is not
relevant to the user’s latest question in the conversation.

The best technique we’ve found so far is to use an LLM to generate the optimal search
query given a conversation as input. For the example conversation above, the prompting
looked something like:

const messages = [...]

const systemPrompt = `You are examining a conversation between
a customer of Example bank and an Example bank chatbot. A

17

documentation lookup of Example bank’s policies, products, or
services is necessary for the chatbot to respond to the customer.
Please construct a search query that will be used to retrieve the
relevant documentation that can be used to respond to the user.`

 let optimizedSearchQuery = await this.textCompletionEngine.
complete(
 [
 { role: ‘system’, content: systemPrompt },
 { role: ‘user’, content:
stringifyChatConversation(messages) }],
 ‘gpt-4’,
 {
 temperature: 0,
 maxTokens: 100,
 },
);

A variation of this technique is query expansion, where multiple subsearch queries are
generated by an LLM. This variation is especially useful in RAG systems with a hybrid
retrieval system that combines search results from multiple data stores with different
structures (e.g., SQL database + separate vector DB). Other prompt engineering
techniques like step-back prompting and HyDE (discussed in the next section) can also
be combined with this approach.

Technique 7: Fix query-document asymmetry with hypothetical document
embeddings (HyDE)

As mentioned in our Pre-retrieval Techniques section, we can leverage LLMs to resolve
query-document asymmetry and improve retrieval results. We can also achieve greater
semantic similarity during the retrieval stage by applying HyDE.

https://arxiv.org/abs/2310.06117

18

Image credit: wfhbrian.com

We do this by asking an LLM at inference time before retrieval has occurred to generate
a hypothetical document or document chunk that answers a query. Here’s an example
prompt that we used along with the 1000-character chunking strategy to generate
hypothetical documents for semantic search:

prompt = ‘Please generate a 1000 character chunk of text that
hypothetically could be found on Example banks website that can help
the customer answer their question.’;

This hypothetical document or chunk is then embedded and used instead of the user
query to conduct the semantic search. The idea is the hypothetical document or chunk
will have greater semantic similarity to the desired chunk than the user query itself in
RAG systems with query-document asymmetry.

Technique 8: Implement query routing or a RAG decider pattern

The query router is one of the more popular advanced RAG techniques we’ve seen. The
idea is to use LLMs to route search queries to the appropriate database when a RAG
system uses multiple data sources. This involves predefining the routing decision options
in a prompt and parsing the LLM’s routing decision output so it can be used in code.

To help lower costs and improve quality in our RAG, we developed a variation of this
technique we call the RAG decider pattern.

https://wfhbrian.com/revolutionizing-search-how-hypothetical-document-embeddings-hyde-can-save-time-and-increase-productivity/

19

Not all queries require a RAG lookup. So, identifying when an LLM can answer a
query independently without external knowledge results in greater efficiency. A basic
example is when a user asks a simple question that does not require RAG information,
such as: “Hi, is this customer support?”

Current chat

conversation

transcript

Response

for User

RAG LLM:

System Prompt: You are an AI

Assistant Use the following pieces

of information when responding to

the user:�

<... Knowledge DB Chunks …>

<hganslgqft o� lon�egsatqonj

Non RAG LLM:

System Prompt: You are an AI

assistant …

<hganslgqft o� lon�egsatqonj

RA1 8ecider ??< CalI

Prompt: Is a documentation

lookup necessary to answer the

user’s question? Respond

with True or False

True

False

Knowledge

Database

A less obvious example is when all the information needed to answer a user query
already exists in recent conversation history. In this case, the LLM simply needs to repeat
or slightly rephrase what it said previously. For instance, “Can you please translate your
last message into Spanish?” or “Please explain that last message like I’m five years old.”
Both queries do not require a new retrieval to occur, as an LLM can answer the queries
simply using its built-in capabilities.

In our case, when the RAG decider has made the decision that a full RAG lookup is
unnecessary for a given user query, we substitute the typical RAG prompt with a prompt
that doesn’t mention anything about RAG results or documents.

An alternative method may be to enable a singular LLM agent to decide whether or not
to conduct a retrieval step via function calling or some other mechanism (e.g., reflection
tokens as introduced in Self-RAG) instead of delegating to a separate LLM call.

https://arxiv.org/abs/2310.11511

20

3. Post-Retrieval Techniques

Post-retrieval optimizations cover strategies or techniques employed after retrieval has
occurred but before final response generation.

A critical consideration at this point: Even if all of the pre-retrieval and retrieval strategies
above have been deployed, there’s still no guarantee that our retrieved documents will
contain all the relevant information needed for the LLM to answer a query.

That’s because retrieved documents can be a mixture of any or all of the following
categories:
• Relevant documents (i.e., documents containing the information needed to answer a

user query)
• Related but irrelevant documents
• Irrelevant and unrelated documents
• Counterfactual documents (i.e., documents that contradict the correct relevant docu-

ments)

Research from Cuconasu et al. indicates that related but irrelevant documents are the
most harmful to RAG systems. The researchers found “accuracy deteriorating by more
than -67% in some cases. Even more importantly, adding just one related document
causes a sharp reduction in accuracy, with peaks of -25% … empirical analysis suggests
that introducing semantically aligned yet non-relevant documents adds a layer of
complexity, potentially misleading LLMs away from the correct response.”

Perhaps even more surprisingly, the same researchers discovered that documents that
are both irrelevant and unrelated to the query “are actually helpful in driving up the
accuracy of these systems when placed correctly.” Those who build RAG systems should
keep an eye on this kind of research but also conduct thorough A/B testing on their own
systems to confirm whether the research findings apply to their system.

Thus far, we’ve been fortunate not to need post-retrieval optimizations in our clients’ RAG
systems. That said, the following post-retrieval techniques interest us and should be on
the radar of all RAG practitioners.

WillowTree, a TELUS International Company
15 Advanced RAG Techniques
from Pre-Retrieval to Generation

3. Post-Retrieval Techniques

https://arxiv.org/abs/2401.14887

21

Technique 9: Prioritize search results with reranking

The research by Cuconasu et al. also demonstrates that positioning the most relevant
documents closest to the query in a prompt improves RAG performance.

Rerank models optimize the priority of chunk search results for a given query. This
technique works well when combined with hybrid retrieval systems and query expansion.

Technique 10: Optimize search results with contextual prompt
compression

LLMs can process the information in each chunk to filter, reformat, or even compress the
final bits of information that make it to the generation prompt.

LLMLingua is a promising framework for this approach. LLMLingua uses a small
language model, such as GPT2-small or LLaMA-7B, to detect and remove unimportant
tokens in prompts. It also enables inference with the compressed prompt in black-box
LLMs, achieving up to 20x compression with minimal performance loss. LongLLMLingua
takes this further and makes it applicable to RAG systems by considering the input query
when conducting compression to remove tokens that are unimportant in general and
unimportant to the query in question.

What’s remarkable is that in addition to fully understanding and using compressed
prompts to answer queries (e.g., as part of RAG), even though the prompts are not
human-readable, GPT-4 can also be used to reverse or uncompress inputs.

Technique 11: Score and filter retrieved documents with corrective RAG

Corrective RAG is an approach first introduced by Yan et al. whereby a T5-Large model
is trained to identify RAG results as correct/relevant, ambiguous, or incorrect for a
given question before providing the results to an LLM for final response generation.
RAG results that do not pass the threshold for being classified as correct/relevant or
ambiguous are discarded.

Compared to the critique approach used by a fine-tuned Llama-2 7B model with Self-
RAG (see Technique 13 below), using a T5-Large model is much more lightweight and
can be combined with any large language model.

https://arxiv.org/abs/2401.14887
https://www.microsoft.com/en-us/research/blog/llmlingua-innovating-llm-efficiency-with-prompt-compression/
https://arxiv.org/abs/2310.06839
https://arxiv.org/abs/2401.15884

22

4. Generation Techniques

Generation optimizations cover improving the LLM call(s) that generate the final
user response. The lowest hanging fruit here would be to iterate on the prompt and
determine the optimal number of chunks to insert into the generation prompt.

We A/B tested this using 1,000, 3,500, and 7,000 tokens’ worth of retrieved context/chunks
with GPT-4. We found that inserting 3,500 tokens’ worth of retrieved context into the
RAG prompt was marginally better than the other options. We suspect this finding is not
universally applicable and that every use case will have a different optimum number.

At this point, one can consider evaluating and improving an LLM’s capabilities for
appropriately handling the different kinds of documents it may receive (relevant, related,
irrelevant, etc.). Ideally, we create what Yoran et al. call a “retrieval-robust LLM.” This
means that:
• when relevant, retrieved context should improve model performance
• when irrelevant or even counterfactual, the retrieved context should not hurt model

performance

In their article on chain-of-noting (CoN), researchers Wenhao Yu et al. add another
characteristic of retrieval-robustness:

“Unknown Robustness: The capacity of a [retrieval-augmented language model] to
acknowledge its limitations by responding with ‘unknown’ when given a query it does
not have the corresponding knowledge to answer, and the relevant information is not
found within the retrieved documents.”

Here are some generation techniques to improve retrieval robustness we’ve come across
but have not yet implemented.

Technique 12: Tune out noise with chain-of-thought prompting

Chain-of-thought (CoT) prompting increases the likelihood that the LLM will arrive at the
correct response in the presence of noisy or irrelevant context through reasoning.

WillowTree, a TELUS International Company
15 Advanced RAG Techniques
from Pre-Retrieval to Generation

4. Generation Techniques

https://arxiv.org/abs/2310.01558
https://arxiv.org/abs/2311.09210

23

Researchers Wenhao Yu et al. took this idea further with chain-of-noting where they fine-
tuned a model to generate “sequential reading notes for each retrieved document. This
process allows for an in-depth assessment of document relevance to the posed question
and aids in synthesizing this information to craft the final answer.” The fine-tuned model
was LLaMA-7B, and the training data was created using ChatGPT.

Technique 13: Make your system self-reflective with Self-RAG

Self-RAG is another fine-tuning-based approach where a language model is trained to
output special reflection tokens during generation. Reflection tokens are either retrieval
or critique tokens. Researchers Asai et al. describe their approach in more detail:

“Given an input prompt and preceding generations, Self-RAG first determines
if augmenting the continued generation with retrieved passages would be
helpful. If so, it outputs a retrieval token that calls a retriever model on demand.
Subsequently, Self-RAG concurrently processes multiple retrieved passages,
evaluating their relevance and then generating corresponding task outputs. It
then generates critique tokens to criticize its own output and choose the best
one in terms of factuality and overall quality.”

Technique 14: Ignore irrelevant context through fine-tuning

Given that LLMs aren’t usually explicitly trained or tuned for RAG, it stands to reason that
fine-tuning a model for this use case can conceivably improve a model’s ability to ignore
irrelevant context. Yoran et al. empirically showed that even 1,000 examples suffice to
train the model to be robust to irrelevant contexts while maintaining high performance
on examples with relevant ones.

Technique 15: Use natural language inference to make LLMs robust
against irrelevant context

Yoran et al. also explored using a natural language inference (NLI) model for irrelevant
context identification. As the researchers point out, there are scenarios where irrelevant
RAG context negatively impacts LLM performance. NLI models can be used to filter out
irrelevant context. This technique works by using the retrieved context only when the
hypothesis (i.e., the use question and LLM generated answer) is classified as entailed by
the premise (i.e., the retrieved context or RAG results).

https://arxiv.org/abs/2311.09210
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2310.01558
https://arxiv.org/abs/2310.01558

24

5. Other Considerations for Advanced RAG Techniques

As this whitepaper shows, there are many techniques available to optimize your RAG
system, and undoubtedly more will be discovered as businesses continue pushing the
capabilities of their generative AI applications. As you research potential techniques,
keep the following considerations in mind.

Input and output guardrails

Mitigating for off-topic or malicious jailbreak inputs and outputs in RAG systems can
be difficult, but it’s critically important, especially in highly regulated industries such as
financial services or healthcare. We believe the best approach is adopting a defense-in-
depth strategy hardened by rigorous red-teaming. We’ve written at length about some
strategies we’ve employed in the following posts:
• deploying LLM moderation toward the output of the main RAG chatbot LLM
• using partial intent classification not only for regular queries, but also to catch poten-

tial jailbreak attempts

Evaluating your RAG system

Having a scalable, automated method of evaluating the quality and accuracy of your RAG
system is critical for:
• ensuring your system is improving over time and preventing regressions
• conducting A/B tests (e.g., for prompt changes)

We’ve written extensively about evaluation strategy, most prominently in our blog on
RAG benchmarks.

Hallucination rates

AI hallucination is still a significant risk with RAG systems, which means detecting,
measuring, and mitigating for hallucinations is another crucial part of building safe and
secure RAG systems. Get started by learning how to detect AI hallucinations.

WillowTree, a TELUS International Company
15 Advanced RAG Techniques
from Pre-Retrieval to Generation

5. Other Considerations for
Advanced RAG Techniques

https://www.willowtreeapps.com/insights/ai-hallucinations-willowtrees-defense-in-depth-approach
https://www.willowtreeapps.com/insights/ai-hallucinations-willowtrees-defense-in-depth-approach
https://www.willowtreeapps.com/craft/partial-intent-classification-how-we-made-a-safe-conversational-ai-assistant-for-a-financial-services-firm
https://www.willowtreeapps.com/craft/evaluating-rag-using-llms-to-automate-benchmarking-of-retrieval-augmented-generation-systems
https://www.willowtreeapps.com/craft/ai-hallucination-detection

25

Other potential improvements

The literature on RAG is vast and continually expanding. Some topics we’ve not explored
yet but excite us a great deal include:
• Fine-tuning the embeddings model
• Using knowledge graphs (i.e. GraphRAG)
• Using long-context LLMs (e.g. Gemini 1.5, or GPT-4 128k) instead of chunking and

retrieval

We’ll test and report on these and other advanced RAG techniques as use cases permit.

Conclusion: Everything You Need to Build and Fine-Tune

Your RAG System

As the landscape of retrieval augmented generation systems rapidly evolves, it
presents many opportunities for enhancing conversational AI and other generative AI
applications. Our experimentation and research alone highlight the potential advanced
RAG techniques to improve:
• information density

Correctly implemented, these techniques drive greater cost efficiencies for businesses
and a better customer experience. But to keep pace with rapidly emerging best practices,
software engineers and data scientists need timely, trustworthy resources to turn to.

WillowTree, a TELUS International Company
15 Advanced RAG Techniques
from Pre-Retrieval to Generation

Conclusion: Everything You Need to
Build and Fine-Tune Your RAG System

Check out the latest in RAG, LLM, and generative AI research on
WillowTree’s Data & AI Knowledge Hub, where we publish all our
leading-edge AI content, from research papers to case studies.

• retrieval accuracy • user response quality

https://www.microsoft.com/en-us/research/blog/graphrag-unlocking-llm-discovery-on-narrative-private-data/
https://www.willowtreeapps.com/services/data-and-ai-consulting/research

26

ai@willowtreeapps.com | 1-888-329-9875
willowtreeapps.com

